Peramalan Ekspor Dengan Hibrida Arima-Anfis

azis muslim

Abstract

Peramalan ekspor Indonesia merupakan salah satu rujukan penting untuk merumuskan target perdagangan. Studi ini mengkonstruksi proyeksi ekspor nasional dengan variabel univariat. Teknologi komputer saat ini telah digunakan untuk mengolah data yang kompleks dan teknologi ini memiliki memiliki keunggulan dalam hal kecepatan pemrosesan data. Tujuan dari penelitian ini adalah untuk meningkatkan keakuratan model konvensional ARIMA dengan model ANFIS dalam meramalkan ekspor Indonesia. Metode yang digunakan untuk membandingkan model adalah Theil's Inequality dan Mean Absolute Persentase Error (MAPE). Data yang digunakan adalah data ekspor bulanan Indonesia dari Januari 2009 sampai Desember 2015. Hasil penelitian menunjukkan bahwa nilai Theil's Inequality adalah 0,20 dan Mean Absolute Persentase Error adalah 29% untuk metode peramalan ARIMA. ANFIS dapat meningkatkan akurasi prediksi ekspor berdasarkan kinerjanya. Hasil model Hybrid adalah: nilai Theil's Inequality sebesar 0,13 dan Mean Absolute Persentase Error sebesar 1,36%. Penggunaan metode yang lebih akurat ini diharapkan bisa menjadi dasar bagi pembuat kebijakan agar lebih rasional.

Keywords


Ekspor; Impor; ARIMA; ANFIS; Peramalan

Full Text:

PDF

References


Alhayat, A. P., & Muslim, A. (2016). Proyeksi Ekspor Dan Impor Indonesia: Suatu Pendekatan Vector Autoregressive. Buletin Ilmiah Litbang Perdagangan, 10(1), 87–102.

Awal, M. A., Sabur, S. A., & Mia, M. I. A. (2010). Forecasting Of Agricultural Export Earnings Of Bangladesh: An Empirical Study Of Fresh Vegetables And Fruits Markets. Bangladesh Journal of Agricultural Economics, 33(1–2). Retrieved from https://ideas.repec.org/a/ags/bdbjae/200250.html

Chani, M. I., Pervaiz, Z., & Chaudhary, A. R. (2011). Determination of Import Demand in Pakistan: The Role of Expenditure Components. Theoretical & Applied Economics, 18(8). Retrieved from https://www.researchgate.net/profile/Zahid_Pervaiz2/publication/227364533_Determination_of_Import_Demand_in_Pakistan_The_Role_of_Expenditure_Components/links/02bfe50f979d4c4b33000000.pdf

EViews. (2015). EViews 9 user’s guide 2. IHS Global Inc.

Gershenfeld, N. A., & Weigend, A. S. (1994). The future of time series. SMR, 764, 6.

Hameed, A. A. A., & Arshad, F. M. (2012). An Empirical Analysis of the Import Demand for Palm Oil in the Five Leading Importing Countries. International Review of Business Research Papers, 8(7), 94–103.

Haviluddin, H., & Jawahir, A. (2015). Comparing of ARIMA and RBFNN for short-term forecasting. International Journal of Advances in Intelligent Informatics, 1(1), 15–22. https://doi.org/10.12928/ijain.v1i1.10

Khadka, M. S., George, K. M., Park, N., & Kim, J. B. (2013). Performance Analysis of Hybrid Forecasting Model In Stock Market Forecasting (Papers No. 1209.4608). arXiv.org. Retrieved from https://ideas.repec.org/p/arx/papers/1209.4608.html

Khan, T. (2011). Identifying an appropriate forecasting model for forecasting total import of Bangladesh. International Journal of Trade, Economics and Finance, 2(3), 242.

Kumar, G., & Gupta, S. (2010). Forecasting Exports Of Industrial Goods From Punjab - An Application Of Univariate Arima Model. Annals of the University of Petrosani, Economics, 10(4), 169–180.

Kumar, M., & Thenmozhi, M. (2012). A hybrid ARIMA-EGARCH and Artificial Neural Network model in stock market forecasting: evidence for India and the USA. International Journal of Business and Emerging Markets, 4(2), 160–178.

Liu, H., Chen, C., Tian, H., & Li, Y. (2012). A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks. Renewable Energy, 48(C), 545–556.

Makridakis, S., Wheelwright, S. C., & McGee, V. E. (1999). Metode dan aplikasi peramalan. Binarupa Aksara. Jakarta.

Nachrowi, D. N., & Usman, H. (2006). Pendekatan Populer dan Praktis Ekonometrika Untuk Analisis Ekonomi dan Keuangan. Jakarta: Lembaga Penerbit Fakultas Ekonomi Universitas Indonesia.

Rafiq, S., Yun, L. H., & Ali, G. (2016). Forecasting the Trend Analysis of Trade Balance of Pakistan: A Theoretical and Empirical Investigation. International Journal of Academic Research in Business and Social Sciences, 6(7), 188–214.

Shi, J., Guo, J., & Zheng, S. (2012). Evaluation of hybrid forecasting approaches for wind speed and power generation time series. Renewable and Sustainable Energy Reviews, 16(5), 3471–3480.

Shukur, O. B., & Lee, M. H. (2015). Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA. Renewable Energy, 76, 637–647.

Siddique, M. A. B. (1995). Estimation of an Import Demand Function For Indonesia: 1971-93. Department of Economics. The University of Western Australia, Australia.

Sugiyono, M. P. P. (2007). Pendekatan Kuantitatif. Kualitatif, Dan R&D, Bandung: Alfabeta.

Tettamanzi, A. G., & Tomassini, M. (2013). Soft computing: integrating evolutionary, neural, and fuzzy systems. Springer Science & Business Media. Retrieved from https://www.google.com/books?hl=id&lr=&id=iuvnCAAAQBAJ&oi=fnd&pg=PA1&dq=tettamanzi+soft+computing&ots=pJ6I2PI4xP&sig=7OUdfeILT9SwXILODT19DNr2DNw

Tokuo, I., Hayato, N., & others. (2015). Impact of Exchange Rate Shocks on Japanese Exports: Quantitative assessment using a structural VAR model. Retrieved from https://ideas.repec.org/p/eti/dpaper/15029.html

Toy, M. M., Moniruzzaman, M. D., & Rashedul, A. B. M. (2011). The export supply model of Bangladesh: an application of cointegration and vector error correction approaches. International Journal of Economics and Financial Issues, 1(4), 163.

Wang, C.-C., Hsu, Y.-S., & Liou, C.-H. (2011). A comparison of ARIMA forecasting and heuristic modelling. Applied Financial Economics, 21(15), 1095–1102.

Wijayanti, & Pulungan. (2013). RBF and ARIMA Combined for Time Series Forecasting | Wiyanti | Seminar Nasional Aplikasi Teknologi Informasi (SNATI). Seminar Nasional Aplikasi Teknologi Informasi, 22–27.

Zadeh, L. A. (1994). Fuzzy logic, neural networks, and soft computing. Communications of the ACM, 37(3), 77–85.

Zhang, G., & Pattuwo, B. E. (1998). dan Hu, MY 1997. Forecasting with Artificial Neural Networks: The State of the Art. Elsevier International Journal of Forecasting, 14, 35–62.

Zhu, B., & Wei, Y. (2013). Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology. Omega, 41(3), 517–524.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Kajian Ekonomi dan Keuangan